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ABSTRACT

Vv'e review the difficulties of the classical fission and fragmentation hypotheses

for the formation of binary and multiple stars. A crucial missing ingredient in

previous theoretical studies is the inclusion of dynamically important levels of

magnetic fields. As a minimal model for a candidate presursor to the formation

of binary and multiple stars, we therefore formulate and solve the problem of

the equilibria of isopedically magnetized, singular isothermal disks, without the

assumption of axial symmetry. Considerable analytical progress can be made

if we restrict our attention to models that are scale-free, i.e., that have surface

densities that vary inversely with distance _ from the rotation axis of the system.

In agreement with earlier analysis by Syer and Tremaine, we find that lopsided

(M = 1) configurations exist at any dimensionless rotation rate, including zero.
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Multiple-lobed (M = 2, 3, 4, ...) configurations bifurcate from an underlying

axisymmetric sequence at progressively higher dimensionless rates of rotation,

but such nonaxisymmetric sequences always terminate in shockwaves before they

have a chance to fission into M = 2, 3, 4, ... separate bodies. On the basis of our

experience in this paper, and the preceding Paper I, we advance the hypothesis

that binary and multiple star-formation from smooth (i.e., not highly turbulent)

starting states that are supercritical but in unstable mechanical balance requires

the rapid (i.e., dynamical) loss of magnetic flux at some stage of the ensuing

gravitational collapse.

Subject headings: Hydrodynamics, Magnetohydrodynamics, .Molecular Clouds,

Stars: Binaries, Stars: Formation

1. Introduction: Figures of Equilibrium and Binary Star Formation

1.1. The Fission Hypothesis

The fission hypothesis for binary star formation evolved from Newton's calculation in

the seventeenth century for the shape of a rotating Earth. Newton imagined an ingenious

experiment boring holes to the center of our planet and filling them with water to show

that the Earth is flatter at the poles than at the equator. This conclusion embroiled him in

controversy with Cassini, who claimed on the basis of astronomical measurements that the

Earth is prolate rather than oblate. (See Todhunter 1873 for a more detailed description,

in particular, for an account of Maupertuis's expedition to Lapland that settled the debate

empirically in favor of Newton.)

Newton's analysis assumed that the gravitational field of a homogeneous spherical Earth

is undistorted by its slow rotation, with the centrifugal effects taken into account only in the

fluid equilibrium. The general analytic expression describing the self-consistent eccentricity

e-_/1 2 2- ea/e t of an equilibrium spheroid of uniform density p with principal axes fa _< e2 =

g_ that rotates with constant angular velocity f_ was given by Maclaurin in 1742:

_2 2(1 - e2) t/2 6

/3 =_ rrGp - ea (3 - 2e 2) sin-le - _ (1 - e2). (1)

In the following year, Simpson (more widely known in connection with his "rule") noticed

that the Maclaurin spheroids can exist only if the rotational parameter/3 _< 0.449331. For

/3 less titan this critical value, two solutions exist, one more flattened than the other. At



/3 = 0, these two solutions correspond to a sphere (e = (), most easily imagined in the limit

i_ --+ 0 with p finite) and a razor thin disk (e = 1, most easily imagined in the limit p --+ oo

with surface density E = f p dz and 12 finite).

Ninety one years later, Jacobi (1834) became intrigued by the existence of two entirely

separate equilibria at low L_. He was particularly impressed by the fact that the less-obvious

disk-like solution cannot be accessed from the spheroidal solution by means of a linear

perturbation analysis. The presence of two unrelated solutions suggested to him that others

may also exist. Jacobi relaxed the requirement of axisymmetry and showed that uniformly

rotating, self-gravitating, liquid, masses can also a_sume triaxial equilibrium figures in which

tile principal axes gl, /?2, and g3 have unequal values.

Meyer (in 1842) discovered that the Jacobian sequence of triaxial ellipsoids branch-

es from the Maclaurin spheroids when the latter's eccentricity reaches e = 0.81267 (/3 =

0.37423). At that point, the figure axes gx and g_ of the Jacobian ellipsoids become equal,

and Jacobian sequence merges into the Maclaurin sequence. If a Maclaurin spheroid is

allowed to dissipate energy and contract homologously to higher density while conserving

angular momentum, it will become triaxial before e can exceed 0.81267. In other words,

the Maclaurin spheroids are secularly unstable with respect to viscous forces and bifurcation

into .lacot)ian ellit)soids I.

In 1885, Poincard found that the Jacobian sequence bifurcates into further classes of

equilibrium that have lop-sided shapes. The first bifurcation sequence corresponds to a series

of egg-shaped figures that become pear-shaped, and occurs when 2 = 0.28403. Poincar4

envisioned the slmv evolution of a contracting spheroid in which the contraction time scale is

much longer than the internal viscous timescale so that uniform rotation can be maintained.

Such an object was imagined to progress along the Maclaurin sequence as it spins up. Upon

reaching 3 = 0.37423, it would lose its axial symmetry" and become a Jacobian ellipsoid.

Poincar4 then conjectured that further secular evolution to 2 = 0.28403 and beyond would

lead to bifurcation into the pear-shaped sequence of figures, which, in the face of additional

increases in the density and rotation rate, would eventually fission into a parent body and

a satellite, such as the Earth and its Moon. The same sequence of events was invoked by

G.H. Darwin (1906), the son of the naturalist, to account for the origin of binary stars (see

also Darwin's 1909 review).

1Consult Chandrasekhar (1969) for an account of the dynamical instability of Maclaurin spheroids a-

gainst transformation into Riemann ellipsoids that contain internal circulation. He also analyzed the secular

instability of rotating ellipsoids against transformation by gravitational radiation into Dedekind ellipsoids

whose figure axes remain fixed in space.



Liapounoff (1905), Jeans (1916), and Cartan (1928), however, discovered that the .Ja-

cobi sequence of ellipsoids becomes dynamically unstable at exactly the point (/3 = 0.28403)

where Poincard's pear-shaped figures first appear. The inevitable appearance of dynamical

instabilities renders the fission hypothesis problematical, in part because of the mathematical

difficulties associated with describing three-dimensional nonlinear hydrodynamical evolution.

A more fundamental difficulty arises from uniformly rotating gaseous equilibrium configura-

tions with realistic degrees of central condensation (for example, gaseous polytropes) reaching

equatorial breakup prior to bifurcation into triaxial configurations (James 1964). Further-

more, if, a.s likely, internal viscous timescales exceed the contraction timescale, a polytropic

configuration will develop differential rotation. As clarified by Ostriker & Mark (1968), and

Ostriker & Bodenheimer (1973), contracting differentially-rotating polytropes become bar-

unstable before reaching equatorial breakup. Therefore, a realistic modern descendant of the

fission hypothesis would amount to the conjecture that an unstable barred figure fragments

into two or more pieces. This hypothesis foundered when definitive numerical simulations by

Durisen et al. (1986) demonstrated that the emergent bar drives spiral waves that transport

angular momentum outward and mass inward, in the process stabilizing the configuration

against fission. Astronomically, this result is consistent with the observation that bars in

flattened galaxies drive outer spiral structures, and do not spin off additional galaxies.

1.2. The Fragmentation Hypothesis

An alternative theory for the formation of binary stars can be traced back to Jeans

(1902), who specified the minimum mass, Mj c< G-_/2a3p -1/2 for an object of isothermal

sound speed a and mean density p, to collapse under its self-gravity in the presence of op-

posing gradients of gas pressure (see also Ebert 1955, and Bonnor 1955) . Hoyle (1953)

considered a large cloud with mass M .._ Mj initially. As it collapses, with a held constant

(because radiative losses under optically thin conditions tend to keep cosmic gases isother-

mal) but p increasing, the cloud progressively contains additional Jeans-mass subunits, which

might collapse individually onto their own centers of attraction. Adjacent collapsing subfrag-

ments could then conceivably wind up as binary stars. A stability analysis by Hunter (1962)

of homogeneously collapsing, pressure-free spheres seemed to support the Hoyle conjecture.

However, Layzer (1964) argued that because the overall collapse and the growth of perturba-

tions proceed with the same powers of time, individual subunits may have insufficient time

to condense into independent entities before the entire cloud disappeared into tile singularity

of Hunter's background state (the analog of the big crunch in a closed-universe cosmology).

A further difficulty with the fragmentation hypothesis arises because self-gravitating



systems that are initially close to hydrostatic equilibrium (or have only one .leans mass) are

necessarily centrally condensed. Numerical calculations by Larson (1969) indicated that such

centrally condensed masses would collapse highly non-homologously. In the case of a singular

isothermal sphere - which has a density distribution p = a'2/27rGr 2 and which contains one

Jeans mass at each radius r - Shu (1977) showed that collapse proceeds in a self-similar

manner, from "inside-out". Past the moment t = 0 when collapse is initiated, a rarefaction

wave moves outward at the speed of sound a into the hydrostatic envelope of the cloud. At

any given time t > 0, roughly half of the disturbed material is infalling, and half has been

incorporated into a tiny hydrostatic central protostar approximated as a mass point. At no

time in the process does any subvolume excluding the center contain more than one Jeans

mass. Shu (1977) conjectured that such solutions are unlikely to fragment, a conclusion

verified by Tohline (1982) to apply more generally to a wide variety of centrally-condensed

collapses.

If such a collapsing cloud is imbued with angular momentum, a structure containing

a star/disk/infalling-envelope naturally develops (Terebey, Shu & Cassen 1984). Numerical

work by Boss (1993) removing the assumption of axial symmetry indicates that rotating

collapse flows with radial density profiles as centrally concentrated as p _ r -2 also avoid

fragmentation on the way down. The fragmentation hypothesis is therefore restricted either

to cases of the collapse of less centrally condensed clouds (e.g. Burkert, Bate & Bodenheimer

1997), or else to cases of breakup into multiple gravitating bodies after a disk has already

formed.

Although the issues of gravitational instabilities and fragmentation within disks are

still active areas of investigation, calculations by Laughlin & Bodenheimer (1994), which

specifically followed the nonaxisymmetric evolution of disks arising from the collapse of

rotating r -2 clouds, did not find disk fragmentation (see also Tomlev et al. 1994; Pickett,

et al. 1998). Rather, as the disks arising from the collapse flow become gravitationally

unstable, they develop spiral structures which elicit an inward flux of mass and an outward

flux of angular momentum that proves sufficiently efficient as to stabilize the disk against

fragmentation (see also Laughlin, Korchagin & Adams 1998).

Boss (1993) has conjectured that isolated molecular cloud cores with density laws as

steep as p oc r -2 will inevitably lead to the formation of single stars accompanied by planets

rather than binarv stars. Since most stars in the Galaxy are members of multiple systems, he

concludes that collapsing cloud cores must generally arise from configurations less steep than

p oc r -2 This point of view is supported by Ward-Thompson et al. (1994), who claim that

observed prestellar molecular cloud cores always have substantial central portions that are

fiat. p _ const, rather than continue along the power law, p _2cr -2, that characterizes their



outer regions. It should be noted, however, that such configurations are in fact consistent

with the predictions of theoretical calculations of molecular-cloud core-evolution by ambipo-

lar diffusion (Nakano 1979, Lizano & Shu 1989, Basu & Mouschovias 1994), which show that

nearly pure power-laws, pcx r -2, arise only for a single instant in time, the pivotal state (Li &

Shu 1996), just before the onset of protostar formation by dynamical infall. Moreover, more

recent analyses of the millimeter- and submillimeter-wave dust-emission profiles by Evans et

al. (2000) and Zucconi et al. (2000) that take into account the drop in dust temperature

(but perhaps, not the gas temperature) in the central regions of externally irradiated dark

clouds show that the portion of the density profile of prestellar cloud cores that is flat (p _,

const), if present at all, is considerably smaller than originally estimated by Ward-Thompson

et al. (1994).

One can also note that while the Taurus molecular-cloud region represents the classic

case of isolated star formation (Myers & Benson 1983), it contains, if anything, more than

its cosmic share of binaries (Ghez, Neugebauer & Matthews 1993; Leinert et al. 1993;

Mathieu 1994; Simon et al. 1995; Brandner et al. 1996). Moreover, when observed by

radio-interferometric techniques, Taurus contains many cloud cores that are well fit by p c(

r -2 envelopes, yet each star-forming core typically contains multiple young stellar objects

(Looney..klundy & Welch 1997).

Recent high-resolution sinmlations of the fragmentation problem carried out with a-

daptive-mesh techniques (Truelove et al. 1998) indicate that many of the previous hydro-

dynamical simulations claiming successful fragmentation with density laws less steep than

p e¢ r -2 contained serious errors. Indeed, as long as the starting conditions are smooth and

close to being in mechanical equilibrium (i.e., start with only one Jeans mass), gravitational

collapses seem in general not to produce fragmentation. The emphasis on the sole fault lying

with the law p _x r -2 is therefore misplaced. Something else is needed. Klein et al. (2000)

identify the missing ingredient as cloud turbulence; our opinion is that magnetic fields may

be equally or even more important.

1.3. The Effect of Magnetic Fields

It is a proposition universally acknowledged that on scales larger than small dense cores,

magnetic fields are more important than thermal pressure (but perhaps not turbulence) in the

support of molecular clouds against their self-gravitation (see the review of Shu, Adams, &

Lizano 1987). Mestel has long emphasized that the presence of dynamically significant levels

of magnetic fields changes the fragmentation problem completely (Mestel & Spitzer 1956;

Mestel 1965a,b; Mestel 1985). Associated with the flux _P fl'ozen into a cloud (or any piece



of a cloud) is a magneticcritical mass:

Mcr(¢) - (2)

Subcritical clouds with masses M less than Mcr have magnetic (tension) forces that are

generally larger than and in opposition to self-gravitation (e.g., Shu & Li 1997) and cannot

be induced to collapse by any increase of the exteraat pressure. Supercritical clouds with

AI > 2VIcr do have the analog of the ,Jeans mass - or. more properly, the Bonnor-Ebert mass

- definable for them, but unless they are highly sup,,zcritical, M >> Mcr, they do not easily

fragment upon gravitational contraction. The reas_m is that if M -,_ Mc_ for the cloud as a

whole, then any piece of it is likely to be subcritical si:Jce the attached mass of the piece scales

as its volume, whereas the attached flux scales as it., ,:ross-sectional area. Indeed, the piece

remains subcritical for any amount of contraction oi the system, as long as the assumption

of field freezing applies. An exception holds if the , ]_)ud is highly flattened, in which case

the enclosed mass and enclosed flux of smaller piece._ both scale as the cross-sectional area.

This observation led Mestel (1965, 1985) to speculaie that isothermal supercritical clouds,

upon contraction into highly flattened objects, coul, i and would gravitationally fragment.

The present paper casts doubt on this speculation (a, when the original cloud begins from a

state of mechanical equilibrium, and (b) when Inagt,_,,ic flux is conserved by the contracting

cloud (see also Shu & Li 1997).

Zeeman observations of numerous regions (see t_,, summary by Crutcher 1999) indicate

that molecular clouds are, at best, only marginally ,upercritical. The result may be easily

justified after the fact as a selection bias (Shu et al. 1999). Highly supercritical clouds have

evidently long ago collapsed into stars; they are not found in the Galaxy today. Highly

subcritical clouds are not self-gravitating regions; they :nust be held in by external pressure

(or bv converging fluid motions); thus, they do not ,:,institute the star-forming molecular-

clouds that are candidates for the Zeeman measurem,,nts summarized by Crutcher (1999).

The clouds (and cloud cores) of interest for star format,.on today are, by this line of reasoning,

marginally supercritical almost by default.

The above comments motivate our interest in re-examining the entire question of binary-

star formation by the fission and fragmentation mechanisms, but including the all-important

dynamical effects of magnetic fields and the empirically well-founded assumption that pre-

collapse cloud cores have radial density profiles that, in first approximation, can be taken

as pcx r -2. Li & Shu (1996: see also Baureis, Eberi & Schmitz 1989) have shown that

the general, axisymmetric, magnetized equilibria representing such pivotal states assume the

form of singular isothermal toroids (SITs): p(r, O) cx r 2R(O) in spherical polar coordinates

(r, 0, _), where R(O) = 0 for (_ = 0 and rr (i.e., the density vanishes along the magnetic

poles). We regard these equilibria as the isothermal (rather than incompressible) analogs



of Maclaurin spheroids,but with the flattening producedby magnetic fields rather than by
rotation. In the limit of vanishingmagneticsupport, SITsbecomesingularisothermal spheres
(SISs). In the limit where magneticsupport is infinitely more important than isothermal
gas pressure,SITs becomesingular isothermal disks (SIDs), with p(w, z) = Z(w)6(z) in

cylindrical coordinates (w, 4, z), where 5(z) is the Dirac delta function, and the surface

density E(_) (x _-t.

In a fashion analogous to the SIS (Shu 1977), the gravitational collapses of SITs have

elegant self-similar properties (Allen & Shu 2000). But it should be clear that the formation

of binary and multiple stars could never result from any calculation that imposes a priori an

assumption of axial symmetry. In this regard, we would do well to remember the warning of

Jacobi in 1834:

"One would make a grave mistake if one supposed that the axisymmetric spheroids of revo-

lution are the only admissible figures of equilibrium."

Motivated by the insights of those who have preceded us, we therefore start the cam-

paign to understand binary and multiple star-formation by considering in this paper the

nonaxisymmetric equilibria of self-gravitating, magnetized, differentially-rotating, complete-

Ix: flattened SIDs, with critical or supercritical ratios of mass-to-flux in units of (2rrG1/2) -1.

A =-- 27rG U2 M(cb)
, (3)

with A > 1 (see Li & Shu 1996, Shu & Li 1997). Keeping A fixed, i.e., under the assumption

of field freezing, we shall find that such sequences of non-axisymmetric SIDs bifurcate from

their axisymmetric counterparts at the analog of the dimensionless squared rotation rate 9

(which we denote in our problem as D 2) given by the linearized stability analysis of Paper I

(Shu et al. 2000; see also Syer & Tremaine 1996). Although some of these (Dedekind-like)

sequences produce buds that look as if they might separate into two or more bodies, we

find that, before the separation can be completed (by secular evolution?), the sequences

terminate in shockwaves that transport angular momentum outward and mass inward in

such a fashion as to prevent fission.

In a future study, we shall follow the gravitational collapse of some of these non-

axisymmetric pivotal SIDs. The linearized stability analysis and nonlinear simulations of

Paper I suggests that the collapse of gravitationally unstable axisymmetric SIDs lead to

configurations that are stable to further collapse but dynamically unstable to an infinity of

nonaxisymmetric spiral modes that again transport angular momentum outward and mass

inward in such a fashion as to prevent disk fragmentation. We suspect the same fate awaits

the collapse of pivotal SIDs that are non-axisymmetric to begin with, as long as we continue

with the assumption of field freezing. Thus, we shall speculate that rapid (i.e., d?lnamical



rather than quasi-static) flux lossduring some stage of the star formation process is an es-

sential ingredient to the process of gravitational fragmentation to form binary and multiple

stars from present-day molecular clouds.

The rest of this paper is organized as follows. In §2 we derive the general equations

governing the equilibrium of magnetized, scale-free, non-axisymmetric, self-gravitating SIDs

with uniform velocity fields. In §3 we show that for SIDs with no internal motions the eqt, a-

tions of the problem can be solved analytically. For the more general case, in §4 we present

an analytical treatment of the slightly nonlinear regime, when deviations from axisymmetry

are small, valid for arbitrary values of the internal velocity field. In §.5 we describe a numer-

ical scheme to compute non-axisymmetric SIDs for arbitrary values of the parameters of the

problem. Finally, in §6 we summarize the implications of our findings for a viable theory' of

binary and multiple star-formation from the gravitational collapse of supercritical molecular

cloud cores that start out in a pivotal state of unstable mechanical equilibrium.

2. Magnetized Singular Isothermal Disks

The governing equations of our problem are given in Paper I (see also Shu & Li 1997).

They are the usual gas dynamical equations for a completely flattened disk confined to the

plane z = 0 except for two modifications introduced by the presence of magnetic fields that

thread verticalh" through the disk, and that fan out above and below it without returning

back to the disk.

First, magnetic tension reduces the effective gravitational constant by a multiplicative

factor e <__1, where
1

e = 1 ,\2 (4)

with the dimensionless mass-to-flux ratio A _> 1 taken to be a constant both spatially (the

isopedic assumption) and temporally (the field-freezing assumption). Second, the gas pres-

sure is augmented by the presence of magnetic pressure; this increases the square of the

effective sound speed by a multiplicative factor O > 1, where we follow Paper I in adopting

A2+3

e = A-.:;7-i-+. (s)



2.1. Equations for Steady Flow

Consider the time-independent equation of continuity in 2D:

V. (Eu)=0. (6)

This equation can be trivially satisified by adopting a streamfunction ko defined by

= v × (7)

which written in cylindrical polar coordinates reads

1 0ko 1 cgk0
- , = (s)

u_, DE 0_ E 0_"

Notice that u. V_ = 0, so curves of constant k0 describe streamlines.

The momentum equation along streamlines can be replaced by Bernoulli's theorem:

llul2 + en(_r) + _v B(¢) (9)
2

where/_(ko) is the Bernoulli function and 7/(E) is the specific enthalpy associated with a

barotropic equation of state (EOS) for the gas alone:

o": dl-I dE7/(E)-- dE r (10)

In equation (10) the vertically intgrated pressure I-I is assumed to be a function of surface

density E alone. For an isothermal EOS, we have H = a2E with a 2 = const, so that

7/= a 2 In E plus an arbitrary additive constant that we are free to specify for calculational

convenience.

In terms of the variables introduced above, the vector momentum equation can now be

written

(V × u) x u + t_'(_)V_ = 0. (11)

Expressed in component form, this equation gives the additional independent relation for

momentum balance across streamlines:

1 [ 0 (ZO_ 1 0 (EO_)]\zo ] + 17)

Notice that the LHS is the z-component of -V x u; thus, EB' is the local vorticity contained

in the flow (proportional to Oort's B constant). The above set of equations is closed by th(,

addition of Poisson's equation:

/ _ E(r,_)rdr (13)12(_, p)= -G d'_b [r 2 + =2_ 2r_cos(_p _ _)]1/2



2.2. Scale-Free Isothermal Solutions

For aligned SIDs, we look for solutions of the form,

7/(E) =a 2 R-,oolimIn (-_) , (14)

v) = (15)
I:U

where the constant K with dimension of g cm -1 and the dimensionless function S((p) are to

be determined. In equation (14) and in everything that follows, the limit operation R ---+co

is to be taken after differentiation of variables like 7-/and _' in the equations of motion have

occurred. We have taken advantage of the fact that additive constants in variables like 7-/,

1/, and • do not enter the physical equations of motion to introduce a temporary artificial

radial scale R so that we need not take logarithms of dimensional quantities. Putting the

freedom to scale E entirely into K, we are free to normalize the function S(V)) such that

1/2---_ S(V))dv) _-- 1. (16)

Substitution of equation (15) into equation (13) yields

foR� _' dxV(_,_) =-GK lim _/'S(¢)dtp (17)
R-_oo J [1 -- x 2 -- 2zcos(_- _)]t/2'

where x = r/_. The inner integral can be evaluated by elementary techniques and gives

ln{(R/=) - cos((p - ¢) + [1 + (R/=) 2 - 2(R/w) cos(v) - W)] '/2} - ln[1 - cos(_ - _p)]. (18)

The argument of the first logarithm equals

which can be expanded for large R as

(2R/:_)[1 - (:_/n)cos(¢- 6,)+ ...]. (20)

Thus, the inner integral in equation (17) equals

ln(2R/_) + In[1 -(P/R)cos(v)- ¢) +...]- ln[1 -cos(v) - ¢)]. (21)

For large R, the middle logarithm goes to zero, and the substitution of the above result then

yields

V(,_, 9)) = 2rcGI( lim [ln(_/2R)+ V(V))] (22)
R--*oo



where

1
v(v) = _ / s(o) ln[t - cos(_ - _)1d_. (23)

We further look for solutions of tile form,

• (:_,v) = e l/2aK lim [-Dln(w/2R)+ W(_o)], (24)
R--+oo

1'2 B (25)s(¢) = -O / a_,I,,
where D and B are dimensionless constants whose values are yet to be specified. In what

follows, it is convenient to define the dimensionless radial mass flux as

U(_) = W'(_), (26)

which we will regard as an ODE for the angular part of the streamfunction W(_) if we know

U(_). An integration of equation (26) over a complete cycle shows that the mass flow across

a full circle must vanish,

f U(_p) d_ = 0, (27)

since IV(v) is a periodic function of _. In order for equation (27) to hold nontrivially, U(_)

must possess both positive and negative values; thus. it must pass through zero at least once

in tile range (-re, +rr). \Ve define our angular coordinate so that U(_) is zero at _ = 0:

u(0) =o. (28)

This convention results in U(_) being an odd function of _.

Substitution of the expression for E and • into equation (8) now vields the identifica-

tions:
,-,1/2 U(_) D

u,_ = _ as(v), u_ = O_nas(v). (29)

In other words, apart from the compression and decompression factor S(_) as fluid elements

flow in azimuth in a nonaxisymmetric disk, the dimensionless function U(_) is the generator

for radial motions and the dimensionless constant D is the generator for angular motions.

The substitution of equations (10), (15), (23), (24), (25), and (29)into equation (9) now

yields K from the the radial part of the equality,

Oa 2

K - 2zceG (1 + DB), (30)

whereas the angular part of the equality gives

1
(U 2 + D 2) + (1 + DB)V + InS = -BB£2S 2

(3t)



[3

Similarly, equation (12) leads to the requirement,

- -_ + -_ = - B S. (32)

Since the combination U/S must be a periodic function of 4, we may integrate equation (32)

over a complete cycle and obtain the further constraint:

D f d_B = _ (33)

Finally, differentiating equation (31) with respect to 9) and using equation (32) we obtain

(S 2 - D2)S ' + DUS + (t + DB)S3_ '' = 0. (34)

Equation (34) possesses critical points at S(9)) = D, where tt_ becomes equal to the magne-

tosonic speed (see eq. 29).

Equations (23), (32), (33) and (34) are the fundamental set of integro-differential equa-

tions governing the problem. They have to be solved in the interval _ = [0, 27r] for the three

unknown functions S(9)), V(_), U(9)) and the unknown constant B. The constant D itself

is freely specifiable. Notice that the arbitrarily introduced radial scale R enters nowhere in

the final equations.

Notice also that equation (32) implies that radial motions arise only in response to a

local imbalance of forces - gravitational, pressure, and inertial - across streamlines, even

though equation (33) requires such forces to be balanced on average over a circle. Moreover,

the governing equations (23), (32), and (34) require S(_) and V(_o) to be symmetric with

respect to _ = _r when U(_) is chosen to be antisymmetric. In other words, _2(9)) and V(_,)

are cosine series in 9) when U(9)) is developed as a sine series. Consequently, the choice of

the zero of the angular coordinate is not unique: for a configuration with a basic M-fold

symmetry, where M is a positive integer, the condition U(_2) = 0 is satisfied in the interval

[0, 27r] at c2 = kTr/M with k = 0, 1, 2,..., 2M, and different choices of the x-axis correspond

to rotations of the equilibrium configuration by multiples of rc/3[.

2.3. Fourier Decomposition for Poisson Integral

When we have departures from axial symmetry, the difference form of the kernel and the

periodic nature of the wanted solutions makes equation (23) suitable for solution by Fourier

series. Since S(_) and 1"(c2) are periodic functions of 9), they are expandable as the series:

S(9)) = So + _ S,, cos(m_), (35)
m=l
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V(_) : I/0 + _ l& cos(m_), (36)
m=l

where we have isolated the axisymmetric terms So and Vo. The coefficients Sm and _ are

real for all m _> 1. In writing S(_o) and V(_) as pure cosine series, we have made use of our

freedom to orient one of the principal figure axes of aligned equilibria along the :r-axis.

Since equation (23) gives 1/(_) as a convolution of S(cp) and In(1 - cos _), substitution

of equations (35) and (36) into equation (23) and application of the convolution theorem for

Fourier cosine transforms result in the identification,

= LmSm, (37)

where

_ 1 /ln(1 -Lm- 2_- -In2cos_)cos(m_)d_ = -1/Iml

ifm =0
(38)

if Iml ___1,

as shown in the Appendix. Therefore, the normalization condition (16) implies

So = 1, V0 =-In2, (39)

and equations (35) and (36) can be written as

O_

s(;) = 1- myra (40)
m:l

O0

V(c2) = -In2 + y_ Vmcos(m_o). (41)
rn=l

If we are given {Ym}_=l, then we know S(¢p) and V(cp). Unfortunately, local knowledge

of either S or V at _ does not determine the value of the other at the same 4. The relationship

is local in Fourier space, so only global knowledge of S(_) gives global knowledge of I"(_2);

i.e., S(_) is a functional, and not a function, of V(_).

Notice that in general, if a set l& of Fourier coefficients corresponds to a solution, then

the set (--1)r"V;,, corresponds to the same configuration rotated bv an angle 7r, as discussed

at the end of §2.2.

3. Static Equilibria

For static equilibria, U = D = 0 and equation (34) reduces to

S' + SV' = O, (42)



which has the barometric solution: S(_) = Ae -v(_°), where A is a constant that can be

adjusted to satisfy the normalization condition (16). Substitution of S(_) = Ae -t'(_) into

Poisson's integral (eq. 23), or alternatively its Fourier decomposition (eq. 40 and 41), then

constrains the solution for V(_). Remarkably, this system of nonlinear functional relations

has an analytical solution, where iso-surface-density contours are ellipses of eccentricity e,

v/l-- e2

- , (43)
S(_) 1 + e cos

with 0 < e < 1, the -t- sign representing our freedom to rotate the equilibrium configuration

by an angle rr, as anticipated at the end of §(2.2). Let us consider the case with the minus

sign (the proof for the case with the plus sign is completely analogous).

The set of Fourier coefficients corresponding to equation (43) is

- cos(m o) - - ,
7rm _-m 1 -- e cos _o rrt

(44)

where we have used formula (3.613.1) of Gradshteyn & Ryzhik (1965) to evaluate the integral.

/,From equation (41) we obtain the potential

_ (1-_)'ncos(m_) 1-ecosq:V(_2) = -In 2 - '2 _ - In (45)
m=l IT/, 1 q- V/1 -- e 2

where we have evaluated the sum of the series by using formula (1.448.2) of Gradshtevn

& Rvzhik (1965). By direct substitution, therefore, we see that S and V are related by

the barometric relationship implied by equation (42): S = Ae -v, where A = v/i - - e2/(1 +

v_ - e2). (QED)

The static axisymmetric solution (a magnetized but nonrotating disk with surface den-

sity E = A'/_) is trivially recovered setting e = 0; Li & Shu (1997) give the time-dependent

self-similar gravitational collapse of this special case. In the other extreme, for e = 1 the

potential becomes

V(c2) = ln(1 - cos _), (46)

and the corresponding set of Fourier coefficients, 14,, = -2/m, substituted into equation

(40), gives the familiar Fourier expansion of the Dirac &function,

S(_2) = 1 + 2 _ cos(m_) = 2rr5((p). (47)
rn---- 1

Thus, the equilibrium configuration degenerates into a semi-infinite filament with uniform

linear mass density # = 2rrK. For values of e between these two extremes, both iso-surface-

density contours and equipotentials are confocal ellipses of eccentricity e. Figure 1 shows

some examples of static SIDs for different values of the eccentricity e.



3.1. A Specific Example: the Molecular Cloud Core L1544

As an amusing sideshow, Figure 2 shows an overlay of one of our eccentrically displaced

static models projected onto a map of thermal dust emission at 1.3 mm obtained by Ward-

Thompson, Motte, & Andr6 (1999) for the prestellar molecular cloud core L1544. Apart

from relatively minor fluctuations due to the cloud turbulence, the solid curves depicting the

iso-surface-density contours of tile theoretical model match well both the observed shapes

and grey-scale of the dust isophotes.

Zeeman measurements of the magnetic-field component parallel to our line of sight

toward L1544 have been made by Crutcher & Troland (2000), who obtain BII = 11 + 2 #G.

For a highly flattened disk, which is reflection symmetric about the plane z = 0, integration

along the line of sight yields cancelling contributions of B_ and By to BII. The z-component

of the magnetic field of our model core is given by

27rGX/2
B: - Z. (48)

We may now calculate the average value of E within a radius R as

J fo R Oa2 A2(A2 + 3)a 21 d_ E_ d_ = -- = (49)

where we have made use of equations (4), (5), (15), (16) and (30). Therefore, the average

value of B_ within a radius R is

27r.G1/2 ,_(,_2 + 3) 2a 2 (50)
(&.)_ (z)- (A,- t) C nR

Notice the pleasant result that the above formulae do not involve e.

Since we model L1544 as a thin disk with elliptical iso-surface-density contours, its

orientation in space is defined by three angles, two specifying the orientation of the disk

plane, the third giving the position of the elliptical contours in this plane. We fix the first

angle by assuming for simplicity that the major axis of the elliptical contours lies in the

plane of the sky. The second angle i is the inclination of the minor axis with respect to

the plane of the sky (i = 0 for a face-on disk) and can be adjusted to fit the observations.

The third angle, specifying the ellipse's orientation in the disk plane, is given as 38 ° north

through east by Ward-Thompson et al. (2000).

We choose the eccentricity e and inclination i by the following procedure. From Figure

2, we can estimate that a typical dust contour has a ratio of distances closest and farthest

from the core center given in a model of nested confocal ellipses by

1-e
-- _ 0.30 =:=>. e _ 0.54. (51)
l+e



Similarly, we may estimate that these ellipses have an apparent minor-to-major axis-ratio of

(1 - e2)l/2cosi ,_ 0.54 _ cosi _ 0.64. (52)

The resulting ellipses for three iso-surface-density contours, spaced in a geometric progression

1:2:4, are shown as solid curves in Figure 2.

Determination of cos/ allows us to compute an expected (BII) = (B..)cosi. Similarly,

we obtain the expected hydrogen column density by multiplying (E) by (cos i) -_ for a slant

path through an inclined sheet and by 0.7 for the mass fraction of H nuclei of mass mH:

NH = 0.7(E)/(mH cos i).

The sound speed for the 10 K gas in L1544 is a = 0.19 km s -I (Tafalla et al. 1998).

These authors give AV = 0.22 km s -l as the typical linewidth for their observations of

C34S in this region. For such a heavy molecule, turbulence is the main contributor to the

linewidth, which allows us to estimate the mean square turbulent velocity along a typical

direction (e.g., the line of sight) as vt2 = AV2/8 In 2. We easily compute that vt2 has only

24°-/0 the value of a 2. Assuming that it is possible to account for the "pressure" effects of

such weak turbulence by adding the associated velocities in quadrature, a 2 + v2t, we adopt

an effective isothermal sound speed of a = 0.21 km s -_ for L1544.

The radius of the Arecibo telescope beam at the distance of L1544 is R = 0.06 pc

(Crutcher & Troland 2000). Ambipolar diffusion calculations by Nakano (1979), Lizano

& Shu (1989), Basu & Mouschovias (1994) suggest that ,\ _ 2 when the pivotal state is

approached (see the summary of Li & Shu 1996). Putting together the numbers, cos i = 0.64,

R = 0.06 pc, a = 0.21 km s -L, and A = 2, we get (BII) = 11 #G, in excellent agreement

with the Zeeman measurement of Crutcher & Troland (2000). These authors also deduce

NH = 1.8 x 1022 cm -2 from their OH measurements, whereas we compute a hydrogen column

density within the Arecibo beam of NH = 1.4 x 1022 cm-2 The slight level of disagreement is

probably within the uncertainties in the calibration or calculation of the fractional abundance

of OH in dark clouds (el. Crutcher 1979, van Dishoeck & Black 1986, Flower 1990, Heiles

et al. 1993).

Our ability to obtain good fits of much of the observational data concerning the prestel-

lar core L1544 with a simple analytical model should be contrasted with other, more elab-

orate, efforts. Consider, for example, the azisymmetric numerical simulation of Ciolek &

Basu (2000), who were forced to assume a disk close to being edge-on (cosi _ 0.3 when

e is assumed to be 0) to reproduce the observed elongation, but who left unexplained the

eccentric displacement of the cloud core's center (very substantial for ellipses of eccentricity

e _ 0.54). The adoption of axisymmetric cores leads to another problem: Ciolek & Basu's

deprojected magnetic field is on average 3-4 times stronger than ours, values never seen di-



rectly in Zeeman measurements of low-mass cloud cores. [See the comments of Crutcher &

Troland (2000) concerning the need for magnetic fields in Taurus to be all nearly in the plane

of the sky if conventional models are correct.] Natural elongation plus projection effects, as

anticipated in the comments of Shu et al. (1999), allow us to model L1544 as a moderately

supercritical cloud, with ,_ _ 2, fully consistent with the theoretical expectations from am-

bipolar diffusion calculations, and in contrast with tile value )_ _ 8 estimated by Crutcher

&: Troland (2000) from the measured values of BII and NH. In addition, if L1544 is a thin,

intrinsically eccentric, disk seen moderately face-on, as implied by our model, then the ex-

tended inward motions observed by Tafalla et al. (1998; see also Williams et al. 1999) may

be attributable to a (relatively fast) core-amplification mechanism that gathers gas (neutral

and ionized) dynamically but subsonically along magnetic field lines on both sides of the

cloud toward the disk's midplane.

Finally, we show in Figure 2 the direction of the average magnetic field projected in

the plane of the sky predicted by our model (thin solid line) and derived from submillimeter

polarization observations of Ward-Thompson et al. (2000) (thin dashed line). Since we have

assumed in our model that the major axis of iso-surface-density contours is in the plane of

the sky, the predicted projection of the magnetic field is parallel to the cloud's minor axis.

The offset between the measured position angle of the magnetic field and the cloud's minor

axis might indicate some inclination of the cloud's major axis with respect to tile plane of

the sky. The turbulent component of tile magnetic field, not included in our model, may

also contribute to the observed deviation.

4. Linear Perturbations of Axisymmetric Rotating SIDs

We now consider equilibrium configurations with internal motions: D -J: 0, U(_) :_ 0.

For comparison with the analysis of Paper I, we begin with a perturbative analysis of the

equations of the problem valid for small deviation from axisymmetry.

to

For a_xisymmetric disks, r_,_ = 0 for m > 1, and therefore equations (40) and (41) reduce

S=So:I, V=V0=-ln2. (53)

Iso-surface-density contours are now circles. Substitution ofthese values into equation (33)
and (34) yields B = D and U = 0. The dynamics of centrifugal balance is contained in the

relationship (30) among the various constants of the problem:

Oa 2

K - 2rreG (1 + D2), (54)



the same as equation (9) of Paper I. These axisymm,. ':c SIDs are uniquely determined, in

an irreducible sense, by a freely specifiable value of D. , bysically, we are also free, of course,

to choose different scalings via a and A, with the latt, determining e and (9.)

Consider now small departures from these axisyl: :_etric states characterized by a basic

M-fold symmetry, with M = 1,2, 3, .... Equations (._ and (41) give

S(_o) = 1 - MVM co.'. ";,;'), (55)

V(_) = - In 2 + _]xt c, :1¢). (56)

Equation (55) shows that for small deviations from ax_ mmetric iso-surface-density contours

are limagons of Pascal (Diirer 1525).

As required by equation (32), U(_o) must be exl, ._'ied as a sine series,

U(_o) = UM sin(.l_ .-:. (57)

To linear order, B = D as in the axisymmetric case.

Substitution of the relations (55)-(57) into equa.:..::s (34) and (32) of the governing set

yields, after subtraction of the axisvmmetric relatio'. ;_d linearizing,

M2(1 - D2)VM - M(1 + D2), '- DU._t = O, (58)

-DVM + U,_r = L: .:.

Solutions are possible for arbitrary (infinitesimal) va:u ,s of I']vt provided

(59)

UM = 2DI :_t, (60)

and

M(1 + D 2) - M2(1 - D:i = 2D 2. (61)

Equation (61) is equivalent to equation (25) of Paper 1 and can be satisfied by M = 1 for

any rotation rate D (including D = 0). For M > 1, we require special values of D:

M
D 2 - for M = 9 3, 4, (62)

M + 2 .....

Notice the result that the required D 2 --+ 1 as M -+ _x:

For any given D, different values of VM << 1 generate a continuum of linearized solutions.

Without loss of generality, we can assume I¢_1 > 0, ,ts the transformation F_t --+ -Vat is

equivalent to a rotation of the equilibrium configuration by an angle rr/-'ff. (see discussion



2o

at the end of §2.2). To lowest order, the two componentsof the fluid velocity asgiven by
equation (29) satisfy

U=:
- 2DVMsin(Mqo), (63)

@l/2a

and

= D[1 + V;,cos(M¢)]. (64)
Ot/Za

Therefore, for infinitesimal values of VM the flow describes a locus in the velocity plane

(u=,, u.,0) which is an ellipse of axial ratio 2 centered on (0, O1/2aD):

Notice that the axial ratios are a factor of v_ larger than the kinematic epicycles a colli-

sionless body would generate upon being disturbed from a circular orbit in a disk that has

a flat rotation curve (e.g., Binney & Tremaine 1987); the extra factor of v_ (and a non-

precessing pattern with M lobes) arises for a fluid disk because of the coherence enforced by

the collective self-gravity of the perturbations.

As t'_l is increased, the flow must eventually try to cross the magnetosonic point,

u_ = @t/2aD, which is a singular point of equation (34). This transition cannot be followed

witho_lt the introduction of shocks (see the analogous phenomena of spiral galactic shocks

treated by Shu, Milione, & Roberts 1973). In the present context, smooth-flow solutions

are possible only if u_ <_ a6) 1/2 (entirely submagnetosonic flow. for D < 1) or uv >_ aO t/2

(entirely supermagnetosonic flow, for D > 1). When D is close to 1, either slightly smaller or

larger, the azimuthal velocity in the SID is very close to magnetosonic already in the axisym-

metric case. Thus, the magnetosonic point is reached when deviations from axisymmetry

are small, and the results of the linear analysis developed above can be applied. Equation

(64) then gives the critical value of the coefficient l:_i, in the linear regime, at which the flow

tries to cross the magnetosonic point,

al _ + 1- , (66)

with the plus (minus) sign valid for D > 1 (D < 1).

5. Fully Nonlinear Models with Internal Motions

5.1. Numerical Method

In the general case, we soh'e the set of governing equations by iteration. For a given

iterate when S(_) is known, we may regard equation (23) as an integral for V(_). Similarly
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equations(32) and (28) constitute an ODE plus its starting condition for U(_p). For general

_o, equation (34) may now be solved as a first order ODE with the boundary condition

equation (16) to obtain a new iterate for S(qo). The procedure actually adopted substitutes

a Fourier transform for a direct integration of equation (23), as described in §2.3.

(A) Fix the value of D that one wants to study. Suppose we want to study a configuration

with a basic M-fold symmetry, with M = 1,2,3,.... Then we would begin with an initial

guess for the Fourier coefficients {Vm}_=l. We then compute

oo

I/(9)) = -In2 + _ Vmcos(rnM_). (67)
m=l

and
DO

S(qo) = 1 - M _ .,l'_, cos(rnM_2). (68)
rn----1

(B) Compute the resulting value of B from equation (33). Since the cycle need be taken

only over 2rc/M in _, we have

d;
B- 2rr Jo S(c;)

Integrate equation (32) for U subject to the starting condition (28). Since S has been forced

to be a cosine series, U is then automatically a sine series, i.e., we should automatically find

U(qo) to be M-periodic, with U(2rc/M). = O.

(C) With D fixed, and with B, V(qo), S(_p), and U(_), known in the form of the current

iterates, solve equation (34) as a first order ODE for S(_), subject to the normalization

condition (16). With this new iterate for S(_) compute the Fourier coefficients

l;n - 1 f2_/M
rrm Jo S(_) cos(m,_l_;) dg) for m = 1,2,... (70)

Compare these coefficients with those from the previous iterate. If they are insufficiently

precise, go back to step (A), after introducing, if necessary, a relaxation parameter to smooth

between successive iterates for Vm.

5.2. Numerical Results

Results from our numerical integrations are illustrated in Figures 3-10. It is convenient

to define a plane (D 2, SM), where SM = --M_/M is the first coefficient in the Fourier expansion

of the fnnction S(_o), and can be considered an indicative measure of deviations from axial
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symmetry. Figure 3 showsthe regionsin the (D2,5'L) plane occupied by M = 1 models with

entirely submagnetosonic or entirely supermagnetosonic flow. At the upper limit of these

two regions the flow attempts a magnetosonic transition at perisys (closest to the system

center) in the former case and at aposys (farthest from the system center) in the latter case,

as computed numerically with the method described in §5.1. The long-dashed line shows

the same magnetosonic limit as given by equation (66) in the linear approximation S_ << 1.

Notice that for D = 0 the results of §3 show that S_ tit = V1¢rit = 2. Tick marks denote the

values of D z, as predicted by the linear analysis of Paper I and §4, where bifurcations occur

with M-fold symmetry (M > 2) from the axisymmetric sequence of SIDs that lie along the

short clashed line.

Figure 4 shows submagnetosonic M = 1 states for the case D 2 = 0.1 as Sl progresses

from the axisymmetric limit (S_ = 0) to just before the magnetosonic transition (SL = 1.39).

Notice that flow velocities are largest at perisys because of the tendency to conserve specific

angular momentum (not exact because the self-consistent gravitational field is nonaxisym-

metric). As a consequence, the magnetosonic transition, when it arrives, is made at the

minimum of the gravitational potential, as seen by a fluid element, when the base flow is

submagnetosonic. Notice also that the iso-surface-density contours are quasi-elliptical with

fo(:i at the center of the system and with the major axes lying in the same direction as the

elong_tion of the streamlines formed by connecting the flow arrows.

Figure 5 shows supermagnetosonic M = 1 states for the case D 2 = 4 as S_ progresses

from the axisymmetric limit (S_ = 0) to just before the magnetosonic transition (S_ = 1.08).

Notice that flow velocities are smallest at aposys, again because of the (inexact) tendency to

conserve specific angular momentum. As a consequence, the magnetosonic transition, when

it arrives, is made at the maximum of the gravitational potential, as seen by a fluid element,

when the base flow is supermagnetosonic. Notice also that the iso-surface-density contours

are now elongated in the opposite sense to streamlines made by connecting the flow arrows.

We can explain the last difference between the submagnetosonic and supermagnetosonic

cases (compare Figs. 3 and 4) by analogy with a forced harmonic oscillator, whose response

is in phase or out of phase with the external sinusoidal forcing depending on whether the

forcing fi'equency is lower or higher than the natural frequency. A similar effect evidently dis-

tinguishes the ability of fluid elements to respond in or out of phase to the nonaxisymmetri(

forcing of the collective gravitational potential depending on whether the flow occurs at sub-

magnetosonic or supermagnetosonic speeds relative to the pattern speed (zero in the present

case). This distinction could be developed as a powerful diagnostic of physical conditions in

flattened cloud cores and massive protostellar disks, if both turn out to have lopsided shapes.

because the former can generally be expected to have submagnetosonic rotation speeds; the



latter, supermagnetosonicspeeds.

Figure 6 shows additional examples of entirely s'.

entirely supermagnetosonic flow (for D 2 = 1.5) for

plane. Models are computed with different values of ;

§5.1. For comparison, the corresponding flow solutio,

are also shown. Notice that the forced epicyclic moti,

field about the gyrocenter marked with a cross (c:

axisymmetric model with the same value of D2), a

::_,gnetosonic flow (for D 2 = 0.5) and

:- 1 SIDs, but now in the (u=, u_o)

,r the numerical method described in

,brained with tile linear analysis of §4

,y tile nonaxisymmetric gravitational

,,sponding to circular motion of the

roaches the magnetosonic transition

(horizontal dashed line) in both cases along a tang, : ill tile velocity-velocity plane. This

behavior is peculiar to M = 1 SIDs, and constitut,- _, _opic to which we will return after

discussing the M > 1 cases.

Figure 7 shows the locus in the D2-JSM[ plan, ,,f sequences of equilibria with given

M-fold symmetry, ranging from axisymmetric mod(,_ . dashed line) to the points where the

submagnetosonic flow acquires a magnetosonic tran/,,i,m (circles). We remind the reader

that, unlike the M = 1 case, bifurcation of M > 1 ::,.,,,mnces from the axisymmetric state

occurs at discrete rather a continuum of values of i.,' . given by D 2 = M/(M + 2). Thus,

M = 2,3,4,... sequences always begin submagner ,-onically, D 2 < 1, at SM = 0, and

terminate with a magnetosonic transition (circles) b, , ,., the nonlinearity parameter S,_/can

acquire very large values.

Figure 8 shows iso-surface-density contours and -o{ocitv vectors for M = 2 equilibria

ranging from the axisymmetric limit ($2 = 0) to j_:.; before the magnetosonic transition

($2 = 0.229). Notice the transformation from oval d_stortions at small & (e.g., S_ = 0.1)

to dumbells at large $2 (e.g., $2 = 0.2). The latter s!,apes terminate at the magnetosonic

transition (S2 = 0.229), where the pinched neck of the dumbell develops a cusp and the

streamlines are trying to change from circulation around a single center of attraction to

circulation around what looks increasingly like two cmJters of attraction.

Figure 9 shows iso-surface-density contours and streamlines for models with M-fold

symmetry, elf = 2, 3, 4 and 5, near the endpoints of the sequences shown in Figure 7. Finally,

Figure 10 shows the velocity-velocity plots for the same four models. The solutions with

M > 1 in Figure 10 differ from those with M = 1 in Figure 4 in that the magnetosonic

transition for M > 1 are made via the development of a cusp in both the iso-surface-density

and velocity-velocity plots. We noted earlier that the magnctosnic transition is made for

M = 1 configurations with the u=, - u_o locus becoming tangent to the critical curve.
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5.3. Interpretation as Onset of Shocks

For gasflow in spiral galaxies,Shuet al. (1973) identifiedcuspformation in the velocity-
velocity plane, asthe onsetof a shockwavewith infinitesimal jumps, and weadopt a similar
interpretation here. For trans-magnetosonicflow beyond the cusp solution (not shown in
Figure 10 but seeShu et al. 1973), a smooth transition from submagnetosonicspeedsto
supermagnetosonicspeedsis possibleas the gasswingstoward its closestapproachto the
center,but a smooth decelerationfrom supermagnetosonicspeedsback to submagnetosonic
speedsis not possibleasthis gasclimbs outwardsand catchesupwith slowermovingmaterial
aheadof it. The transition to slowerspeedsis madeinsteadvia a suddenjump (a shockwave
of finite strength). The shockjump introduces irreversibility to the flow pattern. Prior
to the appearanceof the shockwave,the flow can equally occur in the reversedirection as
in the forward direction, and the streamlinescloseon themselves. After the appearance
of a shockwave,time reversal is no longer possible,and the streamlines no longer close
(see,e.g., the discussionsof Kalnajs 1973 and Roberts & Shu 1973). Instead, angular
momentum is removedfrom the gas (via gravitational torqueswhen the patternsof density
and gravitational potential show phaselags) and transferred outward in the disk, causing
individual streamlines to spiral toward the center and increasingthe central concentration
of mass.The problem then becomesintrinsically time-dependentand cannot be followedby
the steady-flow formulation givenin the presentpaper.

We are uncertain why the magnetosonictransition in the caseM = 1 is not made via

cusp-formation. It may be that in this special case, sufficient gravitational deceleration from

supermagnetosonic to submagnetosonic speeds (rather than via pressure forces) can occur

as to allow a smooth trans-magnetosonic flow to occur in a complete circuit. Unfortunately,

we are unable to study this unprecedented behavior by the methods of the present paper

because the numerical errors introduced by the truncated Fourier treatment of Poisson's

equation compromise our ability to judge true convergence in these difficult circumstances.

In any case, it is hard to believe, even if smooth trans-magnetosonic solutions could be

found for lopsided SIDs, that such solutions could be stable (in a time-dependent sense) to

the creation of shockwaves by small departures from perfect 1-fold symmetry.

5.4. Circulation and Energy

It is interesting to ask whether the nonaxisymmetric bifurcation sequences studied in

this paper represent merely adjacent equilibria, or also possible evolutionary tracks that

might be accessed by secular evolution of a single system. To help answer this question, it is

useful to compute the variation of four quantities along any sequence. The first quantity is
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the ratio C = C/.A4 of the circulation C associated with a streamline to the mass M that it

encloses. For scale-free equilibria, the value of C is independent of the spatial location of the

streamline used to perform the calculation. The second, third, and fourth quantities are the

ratios T = 7-/.M, P =_ P/.M, and W = W/M, respectively, of the kinetic energy 7-, pressure

work integral 79, and gravitational work integral _V contained interior to any streamline, to

the enclosed mass .M. The quantity C is interesting because Kelvin's circulation theorem

(e.g., Shu 1992) combined with the equation of continuity states that C is conserved in

any time-dependent evolution of an ideal barotropic fluid. The quantities T, P, and W are

interesting because they must satisfy the following scalar virial theorem (per unit mass):

2T + (_P + eW = 0. (71)

Let ca = w0(_) define a streamline in the plane of the disk. The condition q, = const

in equation (24) gives immediately

Vao(q)) C_ e W(_)/o, (72)

where the value of the proportionality constant is irrelevant for what follows [the reader

should not confuse the function W(_p) with II" = W/M]. The mass and kinetic energy

contained interior to this streamline are

.£02,'r _o(,*)
JO

1

rjo2 [=oW) (u2= + (74)7----

whereas the circulation and pressure and gravitational work integrals associated with this

streamline are

/ /o--( )C = u. dl = u=-_ + u_,_0 d_, (75)

Jo =_-_ _d=, (76)

/=o(_) Of) E (77)

Notice that the quantity T' equals twice the thermal energy minus a surface term only if we

perform an integration by parts, which we do not do here (cf. §3.2 in Paper I).

If we introduce the nondimensional variables defined in §2.2, these expressions become

= KIl. 7-= 1KOa212, (78),It4
Z
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otl'2a _
C - -_ 12, T' = a2NIl, W = -2rcGK2ll,

where we have used equation (22) to evaluate _O_2/Ova as 27rGK, and where

(79)

_o'.,_ _2,_ U 2 + D 2II - Swo d_, I2 - -_ Wo d_. (80)

Multiplying equation (32) by _0(¢P) defined by equation (72) and integrating over a complete

cycle, we obtain
1'2
--=DB. (81)
It

Therefore,

and
P

P=
M

C 2rreG ( B ) (82)C : .M - 0_/2a I + DB '

I,'V Oa 2
W -- - (1 + DB), (83)

M e

With the expressions (83), the scalar

T Oa 2
-- a 2, T - DB,

.At 2

where we have used eqflation (30) to eliminate K.

virial theorem (71) is satisfied identically.

Since :lI = 1 equilibria exist as a densely populated set of points ill the D2-[SII plane,

it is clear that we can choose many sequences for them that have constant values for C. For

fixed A (field freezing) and a (isothermal systems), C is constant along curves of constant

B/(1 + DB) = D0/(1 + D02), where Do is the axisymmetric value of D. Thus, on such a

sequence,
DoD

BD = (84)
1 + Do(Do - D)"

The dotted curves in Figure 3 show such loci for two representative sequences in the D 2-

]$11 plane: one submagnetosonic, the other supermagnetosonic. At the beginning and end of

the supermagnetosonic sequence displayed in Figure 3, D_ = 1.50 and D 2 = 1.84. Hence, BD

varies from 1.50 at the beginning to 1.98 at the end, and -W _x (1 + BD) therefore increases

by a about 29% from beginning to end. In other words, rapidly rotating, self-gravitating

SIDs with diplaced centers are more gravitationally bound than their axisymmetric coun-

terparts. In the presence of dissipative agents that lower the energy while preserving the

circulation, such disks will secularly tend toward greater asymmetric elongation (see Fig. 5).

More gravitational energy is released when distorted streamlines bring matter closer to the

center than is expended when the same streamlines take the matter farther from the center,

conserving circulation. This exciting result deserves further exploration both theoretically

and observationally for systems other than the full singular isothermal disk.
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At the beginning and end of the submagnetosonic sequence displayed in Figure 3, D o =

0.60 and D 2 = 0.35. Hence, BD varies from 0.60 at the beginning to 0.40 at the end, and

-W cx (1 + BD) therefore decreases by about 12% from beginning to end. This variation

is not very much considering how fast this sequence rotates relative to realistic cloud cores.

Nevertheless, the formal decrease of -W as one leaves the axisymmetric state implies that

submagnetosonic systems require some input of energy to make them less round. Exceptions

are sequences that branch from smaller values of D02, which have smaller variations of -W.

In particular, long spindles have no binding energy disadvantage whatsoever relative to

axisymmetric disks for the nonrotating sequence shown in Figure 1, because here -IV oc

(1 + BD) = 1, a constant. In this regard, it mav be significant that observed cores that are

significantly lopsided (see Fig. 2) typically rotate quite slowly.

The story is more ambiguous for M > 1 equilibria. Here, for given M, the stationary

states occupy one-dimensional curves in the D2-1SMI plane; therefore, we have no control

over how C and -W vary along any sequence. Plotted in Figure 11 are the values of C

and -W as we vary Sat along the sequences for M = 2, 3, 4, 5. Amazingly, the normalized

circulation C is nearly, but not exactly, constant on each sequence, varying by no more than

1% in all cases. Given the small values of St_.t for which solutions exist and the relatively

small variation of D along each sequence, this result is not surprising, because B and DB

differ from their values for axisymmetric SIDs by terms (,.9(S_t). Although in principle secular

evolution along any M > 1 sequence would require a slight redistribution of circulation with

mass, the amount required is truly slight, and one could imagine that mechanisms might

exist that can effect a slow transformation along the sequence toward more nonaxisymmetric

states. In principle, such evolution would seem to favor the formation of M = 2, 3, 4, 5,

... buds, depending on the rate of rotation present in the underlying flow. However, before 2,

3, 4, 5, ... independently orbiting bodies can form by such a "fission" process, this sequence

of events would terminate in shockwaves, and the resultant transfer of angular momentum

(or circulation) outward and mass inward would stabilize the system against actual successful

fission.

In practice, for gaseous systems, a more practical difficulty mitigates against even be-

ginning the secular paths of evolution described in the previous paragraphs for the submag-

netosonic cases. The nonaxisymmetric SIDs with M = 2, 3, 4, 5 depicted in Figures 8 and 9

are all rotating too slowly to be stable against "inside-out" collapse of the type studied for

their axisymmetric counterpart by Li & Shu (1997). This dynamical instability would for-

mally overwhelm any secular evolution along the lines described above. (Supermagnetosonic

M = 1 configurations rotate quickly enough to be stable against "inside-out" dynamical col-

lapse, and a secular transformation to the more elongated and eccentrically displaced states

of Fig. 5 are realistic theoretical possibilities.) We plan to study the dynamical collapse
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and fragmentation properties of nonaxisymmetric, submagnetosonic SIDs with general M-

fold symmetry in a filture paper. In another treatment, we shall also discuss the question

whether configurations with strict M > 1 symmetry are formally (secularly) unstable also

to perturbations of M = 1 periodicity (i.e., to additional "lopsided" bifurcations). But, for

the present, we merely remark that the practical attainment of any of the nonaxisymmet-

ric pivotal states depicted, say, in Figure 8 probably occurs, not along a sequence where

each member has already achieved a (nearly) singular value of surface density at the origin

zz = 0, but along a line of evolution (perhaps by ambipolar diffusion) where the growing

central concentration of matter occurs without the a priori assumption of axial symmetry

(e.g., nonaxisymmetric generalizations of tile calculations of Basu & Mouschovias 1994).

6. Summary and Discusssion

In this paper we have shown that prestellar molecular cloud cores modeled in their piv-

otal state just before the onset of gravitational collapse (protostar formation and envelope

infall) as magnetized singular isothermal disks need not be axisymmetric. The most impres-

sive distortions are those that make slowly rotating circular cloud cores lopsided (,X4 = 1

asymmetry). Although slowly rotating, lopsided cloud cores have a slight disadvantage rel-

ative to their axisymmetric counterparts from an energetic point of view, such elliptical

configurations do seem to appear in nature (see Fig. 2).

.More intriguingly, elongated, eccentrically displaced, supermagnetosonically rotating

SIDs (that are stable to overall graviational collapse) are preferred to their axisymmetric

counterparts if the excess binding energy of the latter can be radiated away without chang-

ing the circulation of the streamlines. If the mass of the circumstellar disk of a very young

protostar is a large fraction of the mass of the system, it might be possible to find such

M = 1 distortions of actual objects by future MMA observations. If such disks have (per-

turbed) flat rotation curves, we predict (see Fig. 5) that the mm-wave isotphotes should be

elongated perpendicular to an eccentrically displaced central star and also "perpendicular to

the eccentric shape of the streamlines (as might be deducible from isovelocity plots common

for investigations of spiral and barred galaxies).

Bifurcations into sequences with M = 2, 3, 4, 5, and higher symmetry require rotation

rates considerably larger (> 0.7 times the magnetosonic speeds) than is typically measured

for observed molecular cloud cores (e.g., Goodman et al. 1993). Although seemingly more

pronlising for binary and multiple star-formation, the models with M = 2, 3, 4, 5, ...

symmetries all terminate in shockwaves before their separate lobes can succeed in forming

anything that resembles separate bodies (see Fig. 8). For these configurations to exist at all,



the basicrotation rate has to be fairly closeto magnetosonic.It is then not possiblefor the
nonaxialsymmetry to becomesufficiently pronouncedas to turn streamlines that circulate
around a single center to streamlines that circulate around multiple centers (as is needed
to form multiple stars), without the distortions causingsupermagnetosonicallyflowing gas
to slam into submagnetosonicallyflowing gas. The resultant shockwavesthen increasethe
central concentration in sucha fashionas to suppressthe tendencytoward fission.

Wehavemanagedto gain the aboveunderstandingsemi-analytically only because of the

mathematical simplicity of isopedically magnetized SIDs. The same understanding probably

underlies similar findings from numerical simulations of the fission process that inevitably end

with the creation of shockwaves before the actual production of two or more separately grav-

itating bodies (Tohline 2000, personal communication). This negative result, combined with

the analysis of the spiral instabilities that afflict the more rapidly rotating, self-gravitating,

disks into which more slowly rotating, cloud cores collapse (also modeled here as SIDs), is

cause for pessimism that a successful mechanism of binary and multiple star-formation can

be found by either the fission or the fragmentation process acting in the aftermath of the

gravitational collapse of marginally supercritical clouds during the stages when field freezing

provides a good dynamical assumption.

It might be argued that our analysis also assumed smooth starting conditions, and that

therefore, turbulence might be the more important missing ingredient. However, the low-

mass cloud cores in the Taurus molecular cloud that gives rise to many binaries and multiple-

star systems composed of sunlike stars are notoriously quiet, with turbulent velocities that

are only a fraction of the thermal sound speed (e.g., Fuller & Myers 1992). Such levels of

turbulence are well below those that appear necessary to induce "turbulent fragmentation"

in the numerical simulations of Klein et al. (2000). Interstellar turbulence is undoubtedly

an important process at the larger scales that characterize the fractal structures of giant

molecular clouds (see, e.g., Allen & Shu 2000), but it probably plays only a relatively minor

role in the simplest case of isolated or distributed star-formation that we see in clouds like

those in the Taurus-Auriga region, which has, as we mentioned earlier, more than its share

of cosmic binaries.

In contrast, we know that the dimensionless mass-to-flux ratio A had to increase from

values typically _-, 2 in cloud cores to values in excess of 5000 in formed stars (Li & Shu 1997).

Massive loss of magnetic flux must have occurred at some stage of the gravitational collapse

of molecular cloud cores to form stars. Moreover, this loss must take place at some point

at a dynamical rate, or even faster, since the collapse process from pivotal molecular cloud

cores is itself dynamical. It is believed that dynamical loss of magnetic fields from cosmic

gases occurs only when the volume density exceeds _ 10 _t H2 molecules cm-3 (e.g., Nakano



& Umebayashi1986a,b;Desch& Mouschovias2000). It might be thought that cloud cores
haveto collapseto fairly small lineardimensionsbeforetile volutnedensity reachessuchhigh
values,and therefore, that only closebinaries can be explained by sucha process,but not
wide binaries (McKee 2000, personalcommunication). However,this impressionis gained
by experiencewith axisymmetric collapse. Once tile restrictive assumption of perfect axial

symmetry is removed, we gain the possibility that some dimensions may shrink faster than

others (e.g., Lin, Mestel, & Shu 1965), and densities as high as 10 _ cm -3 might be reached

while only one or two dimensions are relatively small, and while the third is still large enough

to accomodate the (generally eccentric) orbits of wide binaries.

We close with the following analogies. Tile basic problem with trapped magnetic fields

is that they compress like relativistic gases (i.e., their stresses accumulate as the 4/3 pow-

er increase of the density in 3-D compression). Such gases have critical masses [e.g., the

Chandrasekhar limit in the theory of white dwarfs, or the magnetic critical mass of equa-

tion (2)] which prevent their self-gravitating collections from suffering indefinite compression,

no matter how high is the surface pressure, if the object masses lie below the critical values.

Moreover, while marginally supercritical objects might collapse to more compact objects

(e.g., white dwarfs into neutron stars, or cloud cores into stars), a single such object cannot

be expected to naturally fragment into multiple bodies (e.g., a single white dwarf with mass

slightly bigger than the Chandrasekhar lilnit into a pair of llelltlon stars).

In order for fragmentation to occur, it might be necessary for the fluid to decouple

rapidly from its source of relativistic stress. For example, the universe as a whole always

has many thermal Jeans masses. Yet in conventional big-bang theory, this attribute did

not do the universe any good in the problem of making gravitationally bound subunits,

as long as the universe was tightly coupled to a relativistic (photon) field. Only after the

matter field had decoupled from the radiation field in the recombination era, did the many

fluctuations above the Jeans scale have a chance to produce gravitational "fragments." It is

our contention that this second analogy points toward where one should search for a viable

theory of the origin of binary and multiple stars from the gravitational collapse of magnetized

molecular cloud cores.
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A. Appendix

Given the definition

_ 1 / l_'ln(i-cos_o)cos(m_)d_a, (.4`1)Lm - 2rr In(1 - costa) cos(me2) d_ =

where rn is an integer (positive or negative), we show that

Lm= { -In2 ifm =0,if ),,,! _>:. (A2)

(1) Form =0,

I : I /_In(X-cos_)d_ (.4`3)Lo= _ ln(1-coscz) d_= _-_,:

Successive transformations _ -+ -c 2 and r: -+ _2 + 7, ,h,monstrate

Lo = -1 fa ln(1-cosp)d_:= _1ao/'Cln(1 +cos_)d:, (A4)
71" 7r Z"

which is just a statement that cos (p is odd relative to the midpoint of the interval (0, 7r). If

we add equations (A3) and (A4), we get

f !/:2Lo = -1 ln(1 - cos 2 p) d_ = - ln(sin 2 _o) d_. (.4,5)
71"

Rewrite sin2qz = (1/2)(1 - cos_y) where X _ 2p: then

I /0 2=2Lo = - In 2 + _ ln(1 - cos X) dx. (A6)

But the last integral is another expression for Lo (see eq. [A31); thus, Lo = - In 2. (QED)

(2) Integrate equation (A1) once by parts to obtain

1 U _' sin(rn_)fin _d_
rnLm = -2---£ J- ....... ' (At)

,-r 1 - cos _p

Multiply and divide the integrand by 1 + cos _ and write 1 - cos 2 _2 as sin 2 (p. Thereby obtain

mL,_ =-(Ira + g,,,), (.4`8)
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where

We easily find

1 /_+" sin(rnqo) d4[" - 2rr . sin 4

1 /_" sin(m@ cos 4 d_oJm =- 2rr sm 4

It=l and Jr=0.

(A9)

A10)

Alt)

For m > 1, write

sin(m4) = sin_ecos[(m - 1)41 + cosqosin[(m - 1)_ I. A12)

Equation (A9) then yields

rn _ gin-l, A13)

whereas equation (A10) becomes

1 /_+"[cos[(m-1)4]Jm - 2rr ,, cos 4 +
cos 2 4sin[(m - 1)41

sin _p
d4. A14)

Write cose; in the second term as 1 - sin e _. Note that the -since term combines with

the other term in the integrand to form cos(m4), which integrates to zero for m > 1. Thus,

obtain

1 /_= sin[(m- 1)p]d4 = Ira-1. (A15)Jm = 2-7 sin 4

Collecting results, we get

I_+Jm=Im-l+J,,-l=...=11+Jl=l for m_> 1. (A,16)

Since Lm is an even function of m, equation (A8) now implies Lm = -1/Iml for Iml > 1.

(QED)
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Fig. 1.-- Iso-surface-density contours for static SIDs are perfect ellipses with eccentricity e.

For e = 0 the SID is an axisymmetric disk with surface density _ D -l, for e = 1 the SID

degenerates in a semi-infinite filament of constant linear mass density.
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Fig. 2.-- Iso-surface-brightness contours (thick solid lines) from a theoretically computed,

lopsided, magnetized, self-gravitating figure of equilibrium compared with isophotal mea-

surements of Ward-Thompson et al. (1999) of the submillimeter emission from heated dust

grains in L1544. The short solid line and dashed line show the directions of predicted and

measured field inferred from submillimeter-wave polarization observations (Ward-Thompson

et al. 2000).
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Fig. 3.-- The loci (solid curves) in the (D e, ]Sll) plane of critical flow solutions for M = 1

approaching magnetosonic speed starting from entirely submagnetosonic (D < 1) or entire-

ly supermagnetosonic flow (D > 1). The horizontal short-dashed line shows the locus of

axisymmetric models. The long-dashed curves shows the limit of magnetosonic models as

given by equation (66) in the linear approximation -_i << 1. The dotted curves show a sub-

magnetosonic and a supermagnetosonic sequence, ea,,h of which maintains a constant ratio

C of circulation C to enclosed mass .M (see §5.4). Ti,'kmarks pointing downward from the

horizontal dashed line denote the values of D 2 where distortions with M-fold symmetry can

occur, with ._I > 1, as predicted by the linear analv-fi_ .f Paper I and §4.
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Fig. 4.-- Sequence of equilibria with M = 1 and D 2 = 0.1 for $1 = 0 (axisymmetric case),

0.3, 0.6 and 1.39 (magnetosonic flow). Thick lines correspond to iso-surface-density contours

logarithmically spaced. Streamlines are outlined by vectors of length proportional to the

modulus of velocity, drawn to scale in the four panels. Equation (29) shows that the flow

velocities depend, in magnitude and direction, only on the azimuthal angle 4 and not on

the distance w (for given _2) from the center of the mass distribution. In particular, the gas

velocities at perisys (or aposys) are all the same independent of the size of the streamline.

In the last panel, the thin dotted line indicates the locus of magnetosonic velocity reached at

perisys.



S,=O SI=O.4

S,=0.8 Si=l.08

Fig. 5.-- Sequence of equilibria with M = 1 and D 2 = 4 for S, = 0 (axisymmetric case),

0.4, 0.8 and 1.08 (magnetosonic flow). Vectors and lines are a_s in Fig. 4.
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Fig. 6.-- Two examples of entirely submagnetosonic flow (D 2 = 0.5) and entirely super-

magnetosonic flow (D 2 = 1.5) in the velocity-velocity plane, for M = 1. In each panel, the

axisymmetric solutions is marked by a cross. The two inner solid curves are obtained with

S1 = 0.1 and 0.2, whereas the dotted curves show the corresponding linearized solutions,

The outermost solid curve, obtained with S1 = 0.3235 for D 2 = 0.5 and 5"1 = 0.2326 for

D 2 = 1.5, shows the approach to magnetosonic flow (dashed line) defined by the condition

lul== ca=:



O3

0.2

M=2

fi

M=3

G

I ' I

[ ' I ' I

0.2

0.1

o _ i ; i -
M=4

0.48 0.5

M=5

_ _A_L J_IIJ. UU£

0.4 0.6 0.8

D 2

Fig. 7.-- Locus in the D2-ISM[ plane of sequences of equilibria with given M-fold symmetry.

The clashed line indicates the locus of axisymmetric equilibria. Tickmarks denote the values

of D 2 where distortions with M-fold symmetry can occur, as predicted by the linear analysis

of Paper I and §4. Circles indicate the points where tile sequences terminate because of the

occurrence of shocks.
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Fig. 8.-- Sequence of equilibria with M = 2, for $2 = 0 (axisymmetric case), 0.1, 0.2 and

0.229 (magnetosonic flow). Vectors and lines are as in Fig. 4.
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Fig. 9.-- Iso-surface-density contours (thick lines) and streamlines (thin lines) for models

with M-fold symmetry M = 2, 3, 4 and 5 at the point of shock formation. Iso-surface-density

contours develop cusps where the azymuthal flow velocity reaches the magnetosonic value.
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Fig. 10.-- Velocity-velocity plots for the four models shown in Fig. 8.
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Fig. 11.-- Values of C and and -W, in units of 2rceG/Ol/2 a and Oa:/e, respectively, as

functions of IS._rt along the sequences for A,I -- 2 3, 4 and 5 shown in Figure 7. Circles

indicate the points where the sequences terminate because of the occurrence of shocks.




